博客
关于我
【Lintcode】773. Vlid Anagram
阅读量:191 次
发布时间:2019-02-28

本文共 545 字,大约阅读时间需要 1 分钟。

判断两个字符串是否是anagram

Anagram的意思是两个字符串包含相同的字符,并且每个字符的出现次数也完全相同。为了实现这一点,我们可以使用一种高效的方法来验证它们的字符频率是否匹配。

以下是实现步骤:

  • 检查字符串长度是否相同

    如果两个字符串的长度不相同,那么它们显然不能是anagram。直接返回false。

  • 创建字符频率数组

    使用一个大小为256的整数数组来记录第一个字符串中每个字符的出现次数。由于ASCII字符编码范围是0到255,这样可以覆盖所有可能的字符。

  • 统计第一个字符串的字符频率

    遍历第一个字符串中的每个字符,更新对应的字符频率数组。如果某个字符的频率超过0,表示该字符在第一个字符串中存在。

  • 验证第二个字符串的字符频率

    遍历第二个字符串中的每个字符。对于每个字符,检查它在第一个字符串中的频率是否为0。如果发现某个字符在第一个字符串中不存在(频率为0),则返回false。否则,减少对应的频率计数。

  • 返回结果

    如果所有字符的频率都匹配,说明两个字符串是anagram,返回true。

  • 时间复杂度:O(n)

    • n是字符串的长度。
    • 我们只需要遍历两个字符串一次,时间复杂度为O(n)。

    空间复杂度:O(1)

    • 使用了一个固定大小的256个整数的数组,空间复杂度为O(1)。

    转载地址:http://bqds.baihongyu.com/

    你可能感兴趣的文章
    numpy 或 scipy 有哪些可能的计算可以返回 NaN?
    查看>>
    numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
    查看>>
    numpy 数组与矩阵的乘法理解
    查看>>
    NumPy 数组拼接方法-ChatGPT4o作答
    查看>>
    numpy 用法
    查看>>
    Numpy 科学计算库详解
    查看>>
    Numpy.fft.fft和numpy.fft.fftfreq有什么不同
    查看>>
    numpy.linalg.norm(求范数)
    查看>>
    Numpy.ndarray对象不可调用
    查看>>
    Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
    查看>>
    Numpy:按多个条件过滤行?
    查看>>
    Numpy:条件总和
    查看>>
    numpy、cv2等操作图片基本操作
    查看>>
    numpy中的argsort的用法
    查看>>
    NumPy中的精度:比较数字时的问题
    查看>>
    numpy判断对应位置是否相等,all、any的使用
    查看>>
    Numpy多项式.Polynomial.fit()给出的系数与多项式.Polyfit()不同
    查看>>
    Numpy如何使用np.umprod重写range函数中i的python
    查看>>
    numpy学习笔记3-array切片
    查看>>
    numpy数组替换其中的值(如1替换为255)
    查看>>